Segment Routing: what marketing doesn't talk about

Massimo Magnani - Systems Engineer mmagnani@juniper.net

Engineering Simplicity

Objective / Disclaimer

Objective:

• Let's start having operations-oriented discussions around segment routing

Disclaimer:

- This is a discussion of some of the details that don't come up when people are waxing poetic about segment routing
- Nothing discussed here is intractable It's just work
- As an industry we are still working through many of these issues
 - It's going to take time
 - There will be bruises (and probably some scarring)
- This discussion assumes the desire to do something optimal with traffic
- If you're simply replacing LDP, most of this doesn't apply to you

AGENDA

- Segment routing in a FLASH!
- Obvious things
 - label management (space and stacks)
 - RSVP-TE and SR coexistence / migration
- Less obvious things
 - Controller care and feeding
 - SRTE protocols
 - traffic protection
- Summary

SEGMENT TYPES AND LABEL SPACES

BASIC SEGMENT TYPES

- Adjacency-SID (single router hop) • represents an IGP adjacency • node-local significance
- Prefix-SID (one or more hops)
 - Represents IGP least cost path to a prefix
 - Node-SIDs are a special form of Prefix-SIDs bound to loopback
 - \circ Domain-wide significance

ADVANCED SEGMENT TYPES

Anycast-SID (one or more hops)

- Represents IGP least cost path to a nonuniquely announced prefix
- Binding-SID
 - represents a tunnel

SEGMENT ID (SID) SPACE

- SIDs are not labels
 - but SIDs are encoded (carried) in labels
- Domain-wide SIDs coordinated via IGP
- Domain-wide SIDs are allocated in a manner much like RFC1918 addresses
 - Each node reserves a block of labels. this label block is the <u>Segment Routing Global</u> <u>Block (SRGB).</u>
 - Global label = SRGB base value + index

BASIC SR FORWARDING EXAMPLES

Prefix/Node-SID forwarding (using SRGB)

- R1 shortest path to R7 is via R2.
- R2 expects a label value equal to {R2 label-base + index of destination} R1 => R2 label = 507 {500 + 7}

ANYCAST-SIDs / Binding-SIDs

Anycast-SIDs

- Have domain-wide significance
- Define a set of nodes via a non-uniquely announced prefix
- Forwarding choice is made via IGP SPF
- Can use ECMP for forwarding
- Add redundancy, enable load balancing
- Commonly represent a set of geographically close nodes (e.g.: metro)

Binding-SIDs

- have node-local significance
- are bound to other SR paths
- enable an SR path to include another SR path by reference
- are useful for scaling the SID stack at ingress

Binding-SID forwarding operation:

- 1. pop Binding-SID label
- 2. push SID list

OBVIOUS STUFF

LABEL SPACE MANAGEMENT - GLOBAL LABELS

Global Label Space - Prefix-SIDs, Node-SIDs, Anycast-SIDs

- Operation of Prefix-SIDs is reasonably well established across implementations
- Anycast-SID operation may have SRGB-specific considerations
 - It is recommended that nodes announcing an Anycast-SID have an identical SRGB, <u>drafts</u> are reasonably explicit on this point
 - Further, labels after Anycast-SID must be resolvable by downstream nodes
- Anycast-SID has had interesting interop considerations
 - Behavior across major vendors has largely been clarified
 - \circ $\,$ However, there is still opportunity for misconfiguration and blackholing
 - e.g.: discontinuities in the resolution or announcement of Anycast-SIDs
 - Good News: Successful interop-tests already done @ EANTC (March 2018)

Label Space Management - Local Labels

Local Label Space – Adjacency-SIDs, OAM labels, service-specific labels

There may be implementation subtleties in the operation and allocation of local label space

E.G.: some implementations have the concept of static or local service labels, the migration to SR may require managing through the allocation of these service-specific labels in your environment.

JUNOS supports both static and dynamic allocation models for Adjacency-SID

LABEL STACK SIZE

SR provides for very granular traffic control, where the controller does explicit path specification with a combination of global and/or interface specific labels on the head of the packet.

Sounds great, doesn't it? But it carries additional considerations...

Hardware Encapsulation Capabilities - some hardware is severely constrained as to the number of labels that can be imposed in a single pass

- Includes some popular chipsets
- If you control one end of the connection you may be able to offload some label imposition processing to your host stack
- If you're a transit/network provider pay careful attention to the ingress (edge) hardware capabilities
- f you need very specific traffic engineering capabilities (read: link-specific placement) this is a notable consideration

LABEL STACK SIZE

tl;dr - Make sure you understand your hardware capabilities and traffic behaviors. deep label stacks have additional hardware considerations, beyond encapsulation.

- Transit Node/Link implications
 - Will all transit nodes support / forward deep label stacks?
 - On all line cards in the system?
- Load balancing considerations
 - For nodes that support forwarding deep label stacks what are the entropy sources available or activated?
 - Does use of deep label stacks obscure L3/L4 entropy sources that you really need to achieve load balancing objectives on LAGs?

"No worries! I'm going to use Anycast-SIDs and Prefix-SIDs to define paths and I'll have a small label stack." -- We'll come back to this.

. 11

RSVP/SR COEXISTENCE (AND MIGRATION)

2 parts to this discussion

- Objectives
- Control-plane behaviors and operation

Objectives

- Dominant assumption is that **migration** from RSVP to SR is the objective.
- If there is a long-term need to run both RSVP and SR on the same infrastructure it's likely preferable to put both domains under a common controller as soon as possible
 - Particularly if P2MP-TE is in the mix

12

RSVP/SR COEXISTENCE

Control-plane behaviors and operation

- Placement of SR LSPs in the same domain as RSVP-TE LSPs runs the risk of introducing inaccuracies in the TED that is used by distributed or centralized RSVP path computation engines
- Generic problem associated with management of dark bandwidth pools

<u>draft-ietf-teas-sr-rsvp-coexistence-rec-04</u> in the work to address RSVP/SR Coexistence

RSVP/SR COEXISTENCE SOLUTION OPTIONS (1)

Static Bandwidth Partitioning

- Reservable interface bandwidth is statically partitioned between SR and RSVP-TE
- Each operates within respective bandwidth allocation

Downside

Potentially strands bandwidth; protocols cannot use bandwidth left unused by the other protocol

Centralized Capacity Management

Central controller performs path placement for both RSVP-TE and SR LSPs

Downside

Requires the introduction of a central controller managing the RSVP-TE LSPs as a prerequisite to the deployment of any SR LSPs

RSVP/SR COEXSITENCE SOLUTION OPTION(2)

Flooding SR Utilization in IGP

SR utilization information can be flooded in IGP-TE and the RSVP-TE path computation engine (CSPF) can be changed to consider this information

Downside

- Requires changes to the RSVP-TE path computation logic
- Carries upgrade requirement in deployments where distributed path computation is done across the network

Running SR over RSVP-TE

Run SR over dedicated RSVP-TE LSPs that carry only SR traffic.

Downside

Requires SR to rely on RSVP-TE for deployment

RSVP/SR COEXISTENCE SOLUTION OPTIONS (3)

Reflect SR traffic utilization by adjusting Max-Reservable-BW

- Dynamically measure SR traffic utilization on each TE interface and reduce the bandwidth allowed for use by RSVP-TE
- Incurs no change to existing RSVP path calculation procedure
- Assumes the use of Auto-BW w/i RSVP domain
- Controller may operate entirely within the context of the SR traffic domain

Reflection procedure on each TE node as follows:

- Periodically retrieve SR traffic statistics for each TE interface
- Periodically calculate SR traffic average over a set of collected traffic samples
- If the change in SR traffic average is greater than or equal to SR traffic threshold percentage (configured), adjust Max-Reservable-BW
 - Results in the RSVP-Unreserved-BW-At-Priority-X being adjusted
- RSVP-TE nodes can re-optimize LSPs accordingly

Implementations are shipping, Junos supports is today

LESS OBVIOUS STUFF

CONTROLLER (+ COLLECTOR)

- Controller acquires LSDB • Passive IGP / BGP-LS / telemetry
- Controller understands current network state and utilization via collector
- Calculates traffic demands vs. capacity and availability requirement
 - $\circ\,$ Understands H/W capabilities
 - Aware of current and projected loads
- Controller sends segment list (path) to ingress router to place traffic

 Configuration / BGP SRTE / PCEP
 Other PID are exercised as a series
 - Other RIB programming mechanisms

Business logic Workload demands Availability requirements Network capabilities TE Path confis

JUNIPER

CENTRALIZED PATH COMPUTATION

Benefits

- Centralized control has global view of reserved/available bandwidth
 - Not available at any other point in the network
- Facilitates analytics driven policy
 - Controller receives telemetry
 - Based on Telemetry, Controller configures / alters policy

Additional considerations

- Requires developing a controller or purchasing a controller
 - Staffing and ongoing maintenance of controller development
 - New deployment and/or vendor dependencies
- Concentrated point of failure / congestion
 - Risks mitigated by redundant controllers

SR TRAFFIC ENGINEERING

A Brief Aside

With Segment Routing Traffic Engineering is now primarily Controller driven

- If there are Hardware constraints (on imposition or transit) the controller must calculate longest best paths taking into consideration Anycast/Prefix-SIDs
- Algorithms to compress the label stack are a hot area of optimization
- Some implementations are being extended to support dynamic, distributed computation with SR ingress nodes providing RSVP-like path calculation taking into consideration path constraints (Affinity, SRLGs, etc.)
 - For instance, JUNOS will support this starting with 19.2 release (Q2-2019);

CONTROLLER CARE AND FEEDING

- To effectively place workloads on the network the controller must have visibility into current network utilization and loading
- A controller must respond to fluctuations in traffic quickly to prevent overloading hot links and gracefully migrate traffic loads
- Implies significantly more aggressive instrumentation cycles than is commonly seen in today's networks with a complementary feedback loop to move workloads onto less-utilized paths / rebalance traffic
- Reworking instrumentation to utilize streaming telemetry is a practical day-0 requirement
- Per-label traffic statistics something we're now talking about

WE NEED TO TALK ABOUT STATS

Given the Controller's need for stats, what does the hardware do?

- **It depends:** the ideal is per-interface, per-direction, per-label, per-class statistics, ditto for policy stats (<u>draft-ali-spring-sr-traffic-accounting-02</u>)
- Reality is far uglier
 - Outside of FIB and ACL space, counters are the most precious resource on modern ASICs
 - You're more likely to get a subset of the above (wish)list
- Getting stats off of network elements is another consideration
 - Per-interface, per-label statistics requires significant and often new collection infrastructure
- If you get some useful subset of stats info, what does a label counter get you?

WHAT'S IN A COUNTER?

Anycast/Prefix-SIDs

- Present as a single counter for lots of traffic underneath
- What are the sources for all that traffic?
 - What's been merged underneath these labels?
 - Multiple ingress points in the network?
 - How do you find the right traffic to re-optimize?

SRTE policy counters

- How many policies may resolve to a common segment list?
- How many segment lists collapse to a common set of AnyCast/Prefix-SID destinations at midpoints?
- Will require planning on how to manage and instrument sources and sinks within the network

Punchline: double down on your investment in IPFIX / sFlow collection infra!

SRTE PROTOCOLS: BGP SRTE

BGP SRTE

- The <u>current draft</u> remains an active area of development
- Provides useful capabilities in ECMP-dense environments
- No tunnel/virtual interface configuration, forwarding is instead tied to policy
 - Think "rules for steering" not, explicit-path placement
- New considerations re: data-plane programming and validation
 - Q: How do you know the node accepted the list of segment lists you sent it?
 - Q: How do you know what might have been tangled up in policy logic?
 - A: You don't. You'll have to ask the node afterwards. You'll want telemetry for that.
- Q: do you need to specify a protection / bypass path?
 - \circ $\;$ This might not be the tool you're looking for $\;$

SRTE PROTOCOLS: PCEP

PCEP (Stateful)

- Provides single protocol for the management of RSVP and SR paths
- Flexible management and delegation models
- Requires additional mechanisms for prefix binding and flow specification
- Has an RSVP-ish operational view
 - Capable of signaling SR paths; traffic / flow-mapping is work-in-progress
 - Protection path placement pending ... (resurrect the local protection-draft)
- Provides options for some form of contract with the ingress nodes
 - Can the hardware do what you asked of it?
 - With PCEP the controller can understand node capabilities and act accordingly

SRTE PROTOCOLS: RPC-BASED PATH PLACEMENT

Emergent RPC-based mechanisms for path placement

Some operators are looking to leverage RIB APIs available from vendors and modeling consortia

- pRPD from Juniper (<u>https://juni.pr/2rtY2fV</u>)
- gRIBI from OpenConfig (<u>https://bit.ly/2HZwN7i</u>)
- EOS APIs from arista (<u>https://bit.ly/2xuHNVp</u>)
- Service layer APIs from Cisco (<u>https://bit.ly/2fRvzhz</u>)

RIB APIs

- Commonly provide mechanisms to define label stacks / paths
- Provide mechanisms to associate RIB entries with these paths
- Enable new controller selection models
- Use modern software development tools
 - Leverage widely available tools & protocols
 - Make your developers happy(-ish)
 - Enables more sophisticated error-handling

Additional considerations:

- Requires internal development expertise
- Commonly leveraging a vendor-specific interfaces
 - associated API management policies
 - new test, cert and deployment packaging considerations

SRTE TRAFFIC PROTECTION

- It's 1AM, do you know what your protect path is?
- Did you get to specify it? Probably not.
- How much traffic is going to go over that path? Are you sure?
 - \circ ~ TI-LFA is commonly the reflexive response for SR traffic protection

Lots to like

- No midpoint state
- True post-convergence path provides optimality no u-loops!
- Cool sounding acronym

Practical reality

- Computationally intensive
 - Particularly if SRLGs, etc. in the mix
- May not be deterministic
 - Particularly across vendors
- May require label stack compression to stay within protection encapsulation capabilities
- Ref. prior conversation about counters and load placement (or finding big flows)

Deployment considerations

- Protect path placement remains an active area of development
- Operators requiring explicit protection placement and an understanding of protect path capacity will want to understand available TI-LFA behaviors deeply or explore other options

SUMMARY

- TE didn't really get easier It just got different
- Lots of work remains to operationalize segment routing for traffic engineering
- Data Plane simplification and elimination of control plane state network means building new infrastructure to account for lost or shifted functionality
- Vendors are actively developing the tooling to make deployments happen
- In the meantime
 - Expect considerable variability in implementation capabilities and installed footprint
 - Be prepared to roll your own solutions to some of these problems

Look forward to more ITNOG discussion around these topics as we, as an industry, gain operational experience

Thank you.

Juniper Networks Italy - Massimo Magnani

